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A solution of the problem of the plane parallel flow of viscoplastic medium between two parallel plates when they approach 
(separate) at a specified velocity is given within the framework of the Bingham model in the inertialess thin-layer approximation 
for arbitrary values of the coefficient of viscosity and the yield stress. Analytic expressions are obtained for the velocity and pressure 
fields. The boundary of the flow kernel, where the shear stress on the areas of the parallel planes of the plates is less than the 
yield stress and the component of the velocity, parallel to the plates, does not change in a transverse direction, is determined. 
A single similarity parameter which defines the kinematic and dynamic flow characteristics is found. For a specified law of motion 
of the plates, a general expression is obtained for the force acting on plates of finite size in terms of a dimensionless function of 
a single dimensionless parameter. The law of approach (separation) of the plates under a constant force is found. © 1998 Elsevier 
Science Ltd. All rights reserved. 

A solution of the problem of the extrusion of a viscous medium between approaching parallel plates 
was obtained in the thin-layer approximation of the hydrodynamic theory of lubrication in [1]. Prandtl 
constructed an exact solution in the case of the extrusion of a purely plastic medium [2]. A small 
correction to the Prandtl solution when the viscous stresses are small compared with the plastic stresses 
was obtained in [3]. This solution differs from the Prandtl solution in that there is a thin boundary layer 
close to the wall in which the deformations are non-zero. 

A boundary-value problem on the extrusion of a viscoplastic medium between two parallel plates in 
the thin-player approximation (for a small ratio of the distance between the plates to the length of the 
plates) is formulated below, its variational formulation is given and an existence and uniqueness theorem 
is proved. 

A solution of the boundary-value problem, which holds for any relations between the plasticity and 
viscosity, is constructed in this approximation. It is based on the exact solution of the problem of the 
viscoplastic flow between two fixed plates under a pressure gradient [4]. The result generalizes the 
solutions for a viscous medium [1], a purely plastic medium [2] and a viscoplastic medium with a low 
coefficient of viscosity [3] in the case of zero, infinitely high and high Saint-Venant numbers. 

1. F L O W  B E T W E E N  T W O  F I X E D  P L A T E S  

In the case of a viscoplastic medium, the relation between the stress tensorpij and the strain-tensor 
rate e 0 has the form [5] 

PO = -PqSo + 'tO; 't:/j = 2(g + % / H)e O 

H=(2eoeo) ~>0; i , j=1,2.3 

(1.1) 

where p is the pressure, Ix is the coefficient of dynamic viscosity, z0 is the yield stress, and summation 
is over repeated subscripts i and j. 

A simple exact solution of the problem of the flow of an incompressible viscoplastic medium is a 
plane flow between two fixed parallel plates under a pressure gradient is known [4], and it can be 
represented as follows (Fig. la). 

The stress deviator x0 has just two components z~3 = "c31 = Xxz, the shear stress for the areas of the 
parallel plates, which is non-zero. The stream function V depends on the dimensionless distance Z = 
z/h from one of the plates (2h is the separation between the plates and Q is the flow rate) 
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V = h2'z° signQ V(Z, Zo ) 
6~t 

(1.2) 

~P= 
1 × IZ  2(37. o - Z ) ,  O<~Z~<Z o 

l-Zo [z (3z-zo), Zo Z l 

The velocity components are expressed in terms of the stream function 

u x = ~ c  l 3z; o z = - ~ ¥ 1 a x  = O (1.3) 

When Z > 1, the velocity is extended using symmetry. 
It follows from (1.2) that the parabolic velocity profile when Z ~ [0, Z0] is smoothly joined to the 

rectilinear profile when Z e [Zo, 1]. The boundary Z = Z0 separates the domain of viscous flow from 
the domain of translational motion of the medium without deformation. The quantity Z0, the pressure 
gradient and the shear stress are connected by the relations 

0p sign Q~o ~x 
~x = h( l_Zo ) , " c x z = ( z - h )  (1.4) 

The flow rate Q = 2(v(1) - w(0)) is found from (1.2) and is expressed by the relation 

a =  ~tlQt Z(~(l - ~ Zo) (1.5) 
x0 h2 = 1-  Z 0 

Hence, the quantity Z0 is determined using formula (1.4) for a specified pressure gradient, and the 
velocity field and flow rate are determined using formulae (1.2) and (1.5). 

The solution can be given another treatment which will also be used later to solve the problem of 
the extrusion of a viscoplastic medium. Suppose the flow rate Q is known and it is necessary to determine 
the pressure gradient to be applied in this case in order to find the velocity field and the quantity Z0. 
In order to solve this problem, it is necessary to find the function Zo(a) from Eq. (1.5) and then the 
pressure gradient, using formula (1.4), and the velocity field, using (1.1). Equation (1.5) is a cubic 
equation in Z0 and its single root in the interval Z0 ~ [0, 1) can be represented by the series 

m•O ( m  + l ) b  m 
Z 0 = i - 3  = (3m+l) (a+l )  3m÷l (1.6) 

I 3 )o  b~ 
l_Zo = ' 2 ( a + l ) -  (a+l)3m+2 

2 24 22m+l(3m+ 1)! 
bo = ~ ,  bl = 3-- ~- ..... bm 33,n+2(2m+l)!(m+l)! 
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Series (1.6) converge for all a I> 0. In order to calculate the function Z0 and 1 - Z0 when 0 ~< a ~< a0, it is more 
convenient to use the expansions 

Z 0 = a ~ - I a_  l a ~  + l--a2 +... 
3 18 27 

! , 2 5 1 2 (1.7) 
= l + a ~ + - - a + - - a ~ + - - a  +... 

1-Z 0 3 18 27 

(The values of the parameter a0 and the corresponding best approximations are presented in Section 7.) 

It will be shown below how these results can be extended to solve the problem of the extrusion of a 
viscoplastic medium between approaching parallel plates. 

2. F O R M U L A T I O N  OF THE G E N E R A L  P R O B L E M .  E X I S T E N C E  
AND U N I Q U E N E S S  T H E O R E M S  

We will now consider the problem of the flow of an incompressible viscoplastic medium between two 
parallel plates which are approaching (separating) in a direction perpendicular to the plane of the plates 
(Fig. lb). 

When the dimensions of the plates l are very much greater than the distance 2h between them, we 
use the thin-layer approximation for a viscous fluid [1, 6]. The equations in the stresses can also be 
extended to a viscoplastic medium 

OXxzlOz=3p/Ox,  OplOz=O (2.1) 

We add to (2.1) the solution of the continuity equation, which expresses the velocity components 
in terms of the stream function (formula (1.3)) and the rheological relation (1.1). In the thin 
layer, account has to be taken of the fact that d/c'x ~ 0/Oz and that all of the components of the 
stress tensor, apart from the components 1713 = 1731 = "l;xz, can be neglected. Equation (1.1) then takes 
the form 

Xxz ---- ~ 1 ~ 2 ¥ 1 0 Z  2 +Xosign(O2~lOz2), 

~2¥10Z2 =0, I'c= I~< Xo 

I 'l:az l>  "% 
(2.2) 

Finally, in a system of coordinates fixed to one of the plates, the following boundary conditions for 
the stream function follow from the no-slip conditions on the plates z = 0 and z = 2h 

z -- 0: O¥10z = O, O¥10x = 0 

z = 2h: 3¥/bz  = O, --0¥13x = 2[~ 

(2.3) 

where 2h is the rate of change of the distance between the plates. 
The origin of the system of coordinates x = 0 is placed on the axis of symmetry of the flow and it 

then follows that the conditions for the stream function and the pressure 

(2.4) ¥(0,  z) = O, p(l, z) = p! 

should be imposed at the ends of the interval (0, l). 
The functions Xxz and t~x must be continuously differentiable with respect to z and, consequently, the 

stream function must have two continuous derivatives with respect to z. 
Problem (2.1)-(2.4) has a unique solution for the stream function and consequently also for the velocity 

field. 

To prove this, we will use the variational formulation of the problem for the stream function, which it is easy to 
obtain from general principles for viscoplastic media [7, 8]. 

The stream function ~, which satisfies all the conditions and Eqs (2.1)-(2.4), gives an absolute minimum of the 
functional I 
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, 2,, ½ 
t = J  axf  Daz, D= o.(~")2+Xot¥"l (2.5) 

0 o 

among all the doubly differentiable functions (~(x, z) e C2) which satisfy the boundary conditions 

~(0,z) = ~(x,0) = ¥'(x,0) = ~'(x,2h) = 0, ~(x,2h) = -2hx = Q(x) (2.6) 

where Q(x) is the flow rate across a section with coordinate x. A partial derivative with respect to z is denoted by 
a prime. 

The dissipative potential possesses the following properties: strict convexity and boundedness from below 
(D ~> 0). The strict convexity, the boundedness from below of the functional I and the existence of a unique 
minimizing element for it hence follows from this. The derivative of D with respect to ~" corresponds to the shear 
stress xxz determined using (2.2), that is 

bD I by" = Xxz (¥") (2.7) 

(The concept of subdifferentiability, which generalizes conventional differentiation [9, pp. 30-37], has to be used 
to determine the non-smooth function in (2.7).) 

Using property (2.7), it can be shown that the minimizing element of the variational problem (2.5), (2.6) satisfies 
all the equations and conditions of (2.1)-(2.4). 

Actually, for a variation in D we have the identity 

' 0 - -  80: .o¥ ) (2.8) 

By virtue of (2.6), the variations of ~/and its derivative on the boundaries z = 0 and z = 2h are equal to zero: 
8~ = flU' = 0. From (2.8), for a variation in the functional (2.5), we therefore obtain 

I 2h - - ~  Oyaz 

51=1 I 
0 0 

From the necessary condition for an extremum 8 /=  0, we obtain the equation for the minimizing element 

32Xxz / 3z 2 = 0 (2.9) 

It is clear that Eq. (2.9) and the function Xxz(W"), determined using (2.2), and the boundary conditions (2.6) are 
equivalent to the equations and boundary conditions for W following from (2.1)-(2.4). 

Hence, the equivalence of problem (2.1)-(2.4) in the case of the stream function and the variational problem 
(2.5)-(2.6) is proved and the theorem on the existence and uniqueness of the stream function W is thereby also proved. 

3. S O L U T I O N  OF T H E  B O U N D A R Y - V A L U E  P R O B L E M  

If, in the last equation of (2.6), the function Q(x) is replaced by the constant quantity Q, then Eqs 
(2.9) and (2.2), with conditions (2.6), represent the exact boundary-value problem for the stream function 
of the steady-state flow of a viscoplastic medium between two parallel fixed plates. Its exact solution 
is given by formulae (1.2)-(1.4), which can be shown to be so by checking. Note that the variablex occurs 
in problem (2.9), (2.2), (2.6) as a parameter and its solution for the stream function is therefore 
represented by formulae (1.2) and (1.4), where Q and a are functions of the x coordinate which 
correspond to the last equation of (2.6), that is 

o =-2a.. a =I 0.i> 
l oh l 

In the case of the function Z0(a), all of the results obtained in Section 1 are preserved and, in fact: 
Zo(a) e [0, 1) is the single root of the cubic equation (1.5) with the parameters a; the functions Zo(a) 
and (1 - Zo(a)) -1 are defined by series (1.6), which converge for all values of the argument a, or by the 
asymptotic expansions (1.7) when a ~< 1. 

A solution of the problem of the flow of a viscoplastic medium between two plates as they come closer 
together or move farther apart has therefore been obtained. The flow in an arbitrary cross-section is 
completely defined by a single dimensionless parameter a, which has the meaning of the local inverse 
Saint-Venant number. In the problem under consideration, there is a single similarity parameter a [10]. 
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As the two plates approach one another, the flow in a section with a similarity parameter a will similarly 
be a flow between two fixed parallel plates with a flow rate which corresponds to the same value of a 
(Fig. la, b). The velocity components are determined from (1.2) and (1.3) 

hXo sign/1 c3W ~ /' ~W dZ° (3.2) 
v x = 6Ix ~Z ' ° z = -  ~x = 3 ~Z o da 

The derivative dZo/da in (3.2) is found by differentiating the first series of (1.6) or the first expansion 
of (1.7). 

Error estimates. The thin-layer approximation assumes that the inertial force p(at)x/dt + t~xigOx/& ) 
pt>~/l is small compared wit.h the force due to viscous drag ~T~tgz - ~tOx/(h:Z2o). The velocity is 

estimated by the quantity ox - hl/h. In its order of magnitude, the error which occurs when the inertial 
forces are neglected is equal to the ratio of the inertial forces and the force due to viscous drag, that 
is, to the Reynolds number 

Re = pu xh2Z 2 / (ixl) = p h h ~  I Ix 

Hence, the result which has been obtained will be approximate for the condition Re ~ 1 and h/l 
1. In the case of the purely plastic solution, (Z0 = 0), the first condition is always satisfied and the 
condition h/l ,~ 1 alone is sufficient. 

Analysis o f  the solution. Exact expressions for the stresses in the problem of the extrusion of a purely 
plastic medium have been obtained by Prandtl [2] 

p = p o - X o ( x l h + 2 ~ l - ( z - h ) 2 1 h 2 ) ,  x x z = X o ( z - h ) l h  

We shall now present a comparison of the asymptotic solution of (1.2)--(1.7), (3.1) and known solutions 
in different limiting cases. 

In the case of purely plastic flow, the pressure is found from the solution of (1.3) which is obtained 
when Z0 = 0 and is equal top = Po - "Cor/h. It differs from the exact pressure by a small quantity of the 
order of h/l while the shear stress found using (1.3) is identical with the Prandtl solution [2]. 

Taking account of viscous forces in the case of a large Saint-Venant number [7] corresponds to the 
approximation a ~ 1. It follows from (1.4) that Z0 ~ ~/a. On substituting this asymptotic form into (1.2) 
and (1.3), we obtain a two-term expansion, which corresponds to the solution obtained previously [7]. 

In the case of purely viscous flow, the solution corresponds exactly to the solution of (1.2), (1.3), (3.1) 
if the limiting value Z0 = 1 is substituted into it. 

The solution which has been presented for the stresses (1.4)-(1.7), (3.1) and for the velocities (1.2), 
(1.3) holds over the whole range of Saint-Venant numbers and includes all solutions which are known 
up to this time if the distance between the plates is small compared with their size. 

4. T H E  F O R C E  

The force which acts per unit width of a plate can be calculated by integrating the pressure on its 
surface, partially transforming the corresponding integral and then using the first relation of (1.4) 

t I Op 'c°/2 2 f ( a t ) - E  2f(al)  2f(at)  (4.1) 
F = 2 I  ( P - P t ) d x = - 2 I  X ~ x d X = - s i g n h  ~ -  o T = F * *  2 

o o h a~ a t 

[, J ~!~)3 . ~ a 2IXl/~I/ F o = - 2 -  ~ lab, V..= "c 2_sign/~, f ( a ) = !  ada (4.2) 
- I - - - ' ~ a ) "  at = "~0 h2 

wherep/is the pressure on the boundary of a plate when x = l, a I is the inverse Saint-Venant number, 
and F0 and F~ are the forces for the cases of a purely viscous medium (x0 -- 0, at = ~) and a purely 
plastic medium (IX = 0, at = 0), respectively. 

On substituting the second series of (1.6) or the second expansion of (1.7) into integral (4.2), we 
find 
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l as +3a~ -21n(a+l)+°t+ ~ bm :o bm 
f ( a ) = ~  " 4 9 m=! 3m(a+l)  3m- = (3m+l)(a+l) 3m+l (4.3) 

¢ z =  - =0.21546 
:, m=l 3m(3m + 1) 

2 s 5 7 1 + - - a  ~ + a f (a)  = l a 2  +--a ~ +2aS a4+ .... < 1 (4.4) 
2 5 9 63 4.27 

Series (4.3) converges for all a >I 0. It is more convenient to make use of expansion (4.4) when 
a < 1. It follows from the result obtained that the force is determined by the single similarity parameter 
al. 

For high Saint-Venant numbers (at ~ 1) and the (4.1), (4.2) and (4.4) and (4.6) for them, we obtain 
the asymptotic expansion found in [3] 

5. MOTION OF THE PLATES UNDER A CONSTANT FORCE 

In the case of a specified constant force F, expressions (4.1) and (4.2) change into a differential 
equation in h(t). Actually, expression (4.1) can be reduced to the form 

h 2f(at ) x°12 (5.1) 
~ =  a / 2 '  h°= IF I 

By virtue of the inequality 2f(at)/a~Z> 1, we conclude that h > h0, that is, h0 is the shortest distance 
the plates can approach under the force F. Starting out from its definition (4.2), the variable at can be 
represented in terms of a time derivative as follows: 

stlFI [ = ,o = (5.2) at = ldt -"~- [ hoto Xo 

Then, substituting (5.2) into relation (5.1), we obtain a differential equation for the dimensionless 
function ho/h of the dimensionless time t/to. It can be shown by checking that the solution of this equation 
can be represented in the following parametric form 

( o2) 
ho=cl~(at), t = s i g n h  ~ ~'(a)da ~(a)=2_. ~ (5.3) 
h to .,~ a ' 

Asymptotic expansions can be obtained for sufficiently small a 

• (a) = l - 4 a  )~ + 44 a+ ~ ~na I+n/2 ( 5 . 4 )  
5 225 n=! 

, 4 - .  - - - - - -a  ~ +  lna+b+ ~, +1 ~.  a'¢2 
to 5 225 n=l 

The values of the first seven coefficients ~n in expansion (5.4) are 0.0404; --0.0107; -0.0012; -0.0013; 
0.0027; 0.0014; -0.0003. 

When a < 1.4, the function t(a) can be calculated with an error of less than 1% using formula (5.4). 
When a >I 2, calculations with the same error can be carried out using the following asymptotic formula 

t / t o = a / ( 2  f(a)) + ~ ln(I + 3 / ( 2 a ) ) -  21(3a) 
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It has therefore been established that the motion of the plates for any values of the force, coefficient 
of viscosity, yield stress and geometrical characteristics is defined by the single, universal dependence 
of h/ho on t/to. The form of this dependence is represented by the solid line in Fig. 2. 

6. T H E  C O N D I T I O N  F O R  C O N T I N U O U S  S E P A R A T I O N  
O F  T H E  P L A T E S  

Separation of the plates under a constant force occurs along the same trajectory h(t) as when they approach 
each other but in the opposite direction. However, by virtue of the drop in the pressure on the surface of the plates 
to zero, cavities (flow separation) may be formed in certain segments of the trajectory. Using (1.4) and (2.4), the 
condition for continuous motion can be written as 

I at da 
p(O) = Pt - I x''~° dx > 0 ~ h >~ "c°'---~l. P(al---'-2) P(at) = S (6.1) 

0 h 1 - Z  0 P! at ' o 1-Z0(a) 

(the substitution dx = Ida~at has been used here). 
On substituting the law of motion (5.1) instead of h into the inequality, we obtain the condition for continuous 

separation of the plates 

G(al)= f~lat)P(at)~- ~ ,  Fl = 21pt (6.2) 

Substituting the second series of (1.6) or the second expansion of (1.7) into integral (6.1), we obtain a series 
and an expansions for the integral in (6.1) 

P(a)=3a2 +3a-~+ ~ bm 
2 m=O (3m+l)(a+l) 3'n+l 

(6.3) 

~= ~ bm =0.2496 
,)=0 3 m + l  

. 1 ~ 1 3 (6.4) P(a)=a+2aY2+la2+~a +~a" +... (a<l) 

Expansions (6,3) and (6.4), and expansions (4.3) and (4.4) for f(a) provide comprehensive information on the 
function G(a). When the argument 0 ~< a < ~ is changed, the function G(a) decreases monotonically from the 
value G(0) = 2 to the value G(~)  = 3/2. It follows from this that, when F <~ Ft/2, the separation of the plates will 
always be continuous. On the other hand, when Fl/2 <~ F ~< 2FI/3, the separation of the plates will be continuous 
when h I> h,. The critical value h, is determined from the simultaneous solution of Eq. (5.1) and an equation which 
follows from (6.1), that is 

h, _ 2f(a t) f (a l) F 
' a,P(a,  > = 7, 

The dependence ofh/ho on F/FI is represented by the dashed line in Fig. 2. The scale of the variable 1/2 ~< F/Ft 
~< 2/3 is shown along the top of this figure. (For example, when F/Ft = 0.56, the flow will be continuous along the 
part of  the trajectory h/ho > h/h, -~, 2.12.) 
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7. T H E  R O O T S  O F  E Q .  ( 1 . 5 )  

The function a(Zo), specified by formula (1.5), increases monotonically in the interval [0, 1) and takes any non- 
negative value just once. An inverse function Z0(a) E [0, 1) exists for it, and this determines the single root of Eq. 
(1.5) from the interval [0, 1) for any a />  0. 

To construct series (1.6), which correspond to the root of Eq. (1.5) from the interval Z0(a) e [0, 1), we transform 
Eq. (1.5) to the form 

3(a+ I) = (1 -Zo)  3 +2 (7.1) 
l-Z0 

and make use of Lagrange's theorem [11, pp. 507-511] on the inversion of series. 
Suppose there is an equation in y of the form 

y = A + xdtgy) (7.2) 

wherex is a variable, A is a constant and ~(y) is a function which is analytic at the pointy = A. Then, a neighbourhood 
x ~ (-e, e) exists in which the root of Eq. (7.2) is represented by the series 

xn N--~ 
e=A+x~A)+ nt dA - [~"(A)] (7.3) 

n=2 

To obtain series (1.6), it is sufficient to transform Eq. (7.1) to the form (7.2) and then calculate the coefficients 
of the Lagrange series (7.3). 

Using the substitution 

1 x=3(a+l), y = l - Z  o, tb (y )=y3+2 ,  A = 0  (7.4) 

Equation (7.1) is reduced to the form (7.2). 
The derivatives of O"(A) in (7.2) at the point A = 0 are expressed in terms of the binomial coefficients C~3m+ 1. 

On substituting the expressions for them into the Lagrange series (7.3), we obtain the first series of (1.6). 
A second change of the variables in Eq. (7.1) 

--4 2 tl[~(y) = y-2, A = l (7.5) 
x = 2 7 ( a + l ) 3 ,  y = 3 ( a + l ) ( l _ Z o ) ,  

also reduces it to the form [7.2). Substituting (7.5) into the Lagrange series (7.2) and calculating the derivatives 
of the function ~"(A) = A -~' at the point A = 1, we obtain the second series of (1.6). 

We will now show how to construct the best approximations using partial sums of series (1.6) and expansions 
(1.7) taking the example of four-term expansions 

2 8 32 
ZO=I 3(a+l) 81(a+l) 4 36(a+I) 7' a>ao (7,6) 

Zo =a)~ I 1 N +2.~a 2, a < a o  

The problem consists of determining the boundary point a0, at which formulae (7.6) determine the function Zo(a) 
with the least error. The error of the approximation (7.6) when a > a 0 and a < a 0 is estimated by the quantities 

Table 1 

ao 

0.50 
0.37 
0.33 

Zo 

I r+ l  = I r J  

0.0200 
0.0050 
0.0015 

ao 

(I -Zo) -l 

I r+ l  = Ir_l 

0.1)70 0.0460 
0.130 0.0130 
03.37 0.0021 
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- 2  9 5 
r+ffi , , r_~ 

39(a + 1)10 216a ~ 

The best approximation and the greatest error are found from the equation Ir+(a)[ = [ r_(a) I. From this, we obtain 
that a0 = 0.33 and that the greatest error is I r+ [ = I r_ I = 0.0015. 

The best three-term approximation can be constructed in an analogous manner. For this approximation, we obtain 
the greatest error I r+ I = I r_ [ = 0.005 when a0 = 0.366. 

In exactly the same way, we can find the best two-, three- and four-term approximations for the function 
1/(1 - Z0). The results are shown in Table 1. The form of the functions is shown in the top line. The number of 
terms in the partial sums of series (1.6) and expansions (1.7) is indicated in the first column. The values of a0 and 
the greatest error r~ are indicated in the following columns. Taking account of each successive term reduces the 
error by a factor of approximately four. 

I wish to thank D. M. Klimov, A. V. Gnoyevoi  and V. M. Chesnokov for discussing the results. 
This research was supported financially by the Russian Foundat ion for Basic Research (96-01-01862). 
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